93 research outputs found

    Is It Possible to Produce Certified Hazelnut Plant Material in Sicily? Identification and Recovery of Nebrodi Genetic Resources, in vitro Establishment, and Innovative Sanitation Technique From Apple Mosaic Virus

    Get PDF
    Eight Sicilian cultivars of hazelnut (Corylus avellana L.), namely-Curcia, Nociara Collica, Panottara Collica, Panottara Galati Grande, Parrinara, Panottara Baratta Piccola, Enzo, and Rossa Galvagno, registered into the Italian Cultivar Register of fruit tree species in 2017 were selected from Nebrodi area and established in vitro. The aim of the work was to carry out the sanitation of the cultivars and get virus-free plants from the most important viral pathogen threat, the apple mosaic virus. Virus-free plant material is essential for the production of certified plants from Sicilian hazelnut cultivars, complying the CE (cat. CAC) quality and the technical standards established in 2017 for voluntary certification by the Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF). In this study, we investigated the possibility of establishing in vitro true-to-type and virus-free hazelnut plantlets via the encapsulation technology of apexes. The in vitro shoot proliferation rates were assessed for the different cultivars, sampling periods, temperature treatments, and type of explant used for culture initiation. Viability, regrowth, and conversion rates of both conventional meristem tip culture (MTC) and not conventional (MTC combined with the encapsulation technology) sanitation techniques were evaluated. Copyright © 2021 Yahyaoui, Marinoni, Botta, Ruffa and Germanà

    Chromosome-level genome assembly of Japanese chestnut (Castanea crenata Sieb. et Zucc.) reveals conserved chromosomal segments in woody rosids

    Get PDF
    Japanese chestnut (Castanea crenata Sieb. et Zucc.), unlike other Castanea species, is resistant to most diseases and wasps. However, genomic data of Japanese chestnut that could be used to determine its biotic stress resistance mechanisms have not been reported to date. In this study, we employed long-read sequencing and genetic mapping to generate genome sequences of Japanese chestnut at the chromosome level. Long reads (47.7 Gb; 71.6× genome coverage) were assembled into 781 contigs, with a total length of 721.2 Mb and a contig N50 length of 1.6 Mb. Genome sequences were anchored to the chestnut genetic map, comprising 14,973 single nucleotide polymorphisms (SNPs) and covering 1,807.8 cM map distance, to establish a chromosome-level genome assembly (683.8 Mb), with 69,980 potential protein-encoding genes and 425.5 Mb repetitive sequences. Furthermore, comparative genome structure analysis revealed that Japanese chestnut shares conserved chromosomal segments with woody plants, but not with herbaceous plants, of rosids. Overall, the genome sequence data of Japanese chestnut generated in this study is expected to enhance not only its genetics and genomics but also the evolutionary genomics of woody rosids
    corecore